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Abstract. We study the bound states of a Kronig Penney potential for a nonlinear one-
dimensional Schr̈odinger equation. This potential consists of a large, but not necessarily infinite,
number of equidistantδ-function wells. We show that the ground state can be highly degenerate.
Under certain conditions furthermore, even the bound state that would normally be the highest
can have almost the same energy as the ground state. This holds for other simple periodic
potentials as well.

1. Introduction

In this paper we shall study an unusual generalization of the one-dimensional Kronig–Penney
model. We shall examine in particular the spectrum of the bound states for a Kronig–Penney
potentialV (z), having added a nonlinear term to the Schrödinger equation. Our arguments
will be valid in the case of other simple periodic potentials as well.

Such nonlinear equations with periodic potentials arise in the Ginzburg–Landau
treatment of various phenomena in condensed matter physics. In layered superconductors
for example, such as the high temperature ones, a periodic potential such as the Kronig–
Penney potential can describe the periodically modulated superconductivity of the samples
[1]. Spatially varying parameters in the nonlinear Schrödinger equation were also used to
describe the periodic variation of the impurity concentration in superconductors [2], high
Tc Josephson field effect transistors [3], as well as grain boundaries in superconducting
bicrystals [4], while nonlinear Kronig–Penney models were used for studying twinning-
plane superconductivity [5]. The nonlinear Schrödinger equation must be used in order to
describe all these various phenomena, including the relevant phase transitions. The nonlinear
Schr̈odinger equation has been studied repeatedly, but mostly with regards to its solitons
[6], and usually for nonperiodic potentials. In this work the emphasis is placed on studying
the bound states, rather than solitons.

We shall study the excited states for the equation

− h̄
2

2M

∂29

∂z2
+ V (z)9 + β|9|29 = 0. (1.1)

The nonlinear term forbids the arbitrary normalization of9.
The potential we have in mind is a Kronig–Penney potential, but it could be in general

any simple oscillatory potential. In this work we choose

V (z) = V0

[
1− α

∑
n

δ

(
z

d
− n− 1

2

)]
(1.2)

0305-4470/97/134835+15$19.50c© 1997 IOP Publishing Ltd 4835



4836 S Theodorakis and E Leontidis

with α and V0 being positive. The crucial parameter in this potential is the periodicity
lengthd. The number of wells is large, but not necessarily infinite.

Equation (1.1) minimizes the energy functional∫
dz

[
V (z)|9|2+ β|9|4/2+ h̄2

2M

∣∣∣∣∂9∂z
∣∣∣∣2]. (1.3)

For M → ∞ we would have|9|2 = −V (z)/β, in which case|9|2 would follow the
periodicity of V (z). If the nonlinear term is omitted, the usual Kronig–Penney model is
recovered. In that limit−V0 is the energy, andαV0 is the strength of each attractive
δ-function.

We can write the energy functional in dimensionless form, by measuringz in units of
d, the distance between successive spikes of the potential,9 in units of

√
V0/β, and the

energy in units ofdV 2
0 /β, whereV0 is the positive constant that appears in equation (1.2),

and has the dimensions ofV (z). This constant is taken out ofV (z), so as to render it
dimensionless. In other words,V (z)/V0 = u(z), where u(z) is dimensionless. If we
then define the dimensionless parameterν = h̄2/2MV0d

2, the energy functional takes the
dimensionless form∫

dz

[
u(z)|9|2+ |9|4/2+ ν

∣∣∣∣∂9∂z
∣∣∣∣2 ]. (1.4)

Note that when the quartic term is omitted, we recover the usual linear Kronig–Penney
model, with energyE = −h̄2/2Mνd2. In this case the energy values can be found only
after imposing periodic boundary conditions on|9|2. There are then only certain allowed
values ofν, for a given value ofα. The size of the wavefunction is determined by the
normalization, and when we minimize the energy functional under this constraint, we find
the energy eigenvalues, i.e. the minima of the energy functional.

In the nonlinear case, on the other hand, the size of9 is determined by the nonlinear
terms, through the unconstrained minimization of the functional of equation (1.4). These
nonlinear terms determine fully the behaviour of9, without any need for boundary
conditions. In fact, a periodicu(z) will give a periodic|9|2. Furthermore, the parameters
α andν are now independent, and for any pair of values ofα andν we can find a solution
9, as long asα is sufficiently large. We shall see later what the lower bound onα is
precisely. The energy of each state will be simply the value of the energy functional (1.4)
at its minimum.

We see from equation (1.4) that forν → 0, when the potential is very strong, or very
weakly periodic, we obtain|9|2→−u(z). Thus,9 follows the periodicity of the structure
very closely, since it can change very abruptly. In this limit the sign of9 is arbitrary. So
if the spikes of the potential are very far apart (d is long), the sign of9 could be positive
or negative at each spike (see figure 1(a)).

Let us now switch on slowly the parameterν, bringing the teeth of the potential comb
closer together. Then the wavefunction between neighbouring spikes could have two forms.
If the wavefunction on two successive spikes A and B is positive, say, then the wavefunction
in the intervening region will be reduced, and it will go through a positive minimum
value, although always remaining positive (figure 1(b)). If, however, the wavefunction
changes sign in going from spike B to spike C, then it must pass through a point halfway
between the spikes where it is exactly zero (see figure 1(b)). Since the wavefunction9(z)
minimizes the functional of equation (1.4), the energy equals− ∫ dz |9|4/2, as can be
deduced by combining the dimensionless forms of equations (1.1) and (1.3). Consequently
the wavefunction has less energy if it does not go through zero, always maintaining the
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Figure 1. (a) A typical wavefunction when the potential wells are very far apart (ν ≈ 0). (b) A
typical wavefunction when the potential wells are closer together (ν � 1).

same sign. Indeed, in that case the minimum of|9|4/2 is not zero, and hence the area
under|9|4/2 is greater.

It seems therefore more favourable for the wavefunction to have the same sign on all
spikes of the potential. We say that the ground state is auniformly positivestate then.
If the spikes of the potential are too far from each other however, the minimum value of
the wavefunction between them would be practically zero, and in that case theuniformly
positivestate (where9 has the same sign at all spikes) becomes degenerate in energy with
states that may have9 take on negative values at some spikes, and positive values at others.

We can, for example, have a state that is infinitesimally higher in energy compared
with the uniformly positive ground state, and hence practically equally preferable, even for
spikes not too far apart. This state, with9(0) = 0, 9(z) > 0 whenz > 0, and9(z) < 0
when z < 0, connects regions of different signs of the wavefunction (see figure 2). Then
in the intermediate region9 has to go through zero, and we obtain a region that reminds
us of a domain wall. For a potential withinfinitely many spikes, the energetically costly
root of9 occurs only once, and hence the energy of this state is equal to the energy of the
uniformly positive ground state.

Therefore there can be bound states of equation (1.1) that are degenerate to the ground
state, not being positive everywhere. It is the purpose of this paper to study such bound
states, first through a general variational model (section 2), and then through an exact
study of the Kronig–Penney potential (section 3), as well as through a numerical study of
a periodic potential with Gaussian wells (section 4). We summarize our conclusions in
section 5.

2. Variational study

In this section we shall examine the possibility of having9 change sign in going from one
spike of the potential to the next, as well as the possibility of having9 with the same sign
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Figure 2. First excited state with the root atz = 0, for δ-function wells.

on neighbouring spikes. In the first case9 is odd with respect to the midpoint between the
two spikes, while in the second case it is even. An arbitrary state of the system will then
be a combination of even and odd pieces. In other words,9 will be even between certain
neighbouring spikes of the potential, and odd between others. Thus,9 will maintain its sign
between some spikes, and it will change sign between others. For example, in figure 1(b)
9 is odd in one interval, and even in the other two, while in figure 2 it is even everywhere,
except for the interval at the centre.

We have assumed that the spikes of the potential are atz = n+ 1
2, wheren is any integer.

Let us examine then the two neighbouring quantum wells at the ends of the interval [n− 1
2,

n + 1
2]. We adopt the following odd and even trial wavefunctions, with respect to the

midpoint (z = n), defined on the interval [n− 1
2,n+ 1

2]:

9on(z) = ±ψ sinh[γ (z − n)]
sinh(γ /2)

(2.1)

9en(z) = ±ψ
[

cosh[γ (z − n)]
cosh(γ /2)

− sech2(γ /2)

]
coth2(γ /2) (2.2)

whereψ and γ are variational parameters. We note that9on(n) = 0, 9on(n + 1
2) =

−9on(n − 1
2) = ±ψ , and 9 ′on(n + 1

2) = 9 ′on(n − 1
2) = ±ψγ coth(γ /2). Similarly

9en(n) = ±ψ [cosh(γ /2) − 1]/ sinh2(γ /2), 9en(n + 1
2) = 9en(n − 1

2) = ±ψ , and
9 ′en(n+ 1

2) = −9 ′en (n− 1
2) = ±ψγ coth(γ /2).

These wavefunctions are such that they can be joined together in any order to form a
continuous wavefunction everywhere, consisting of even and odd pieces. We could have,
for example,9 = 9on in [n − 1

2, n + 1
2], 9 = 9e,n+1 in [n + 1

2, n + 3
2], 9 = −9o,n+2

in [n + 3
2, n + 5

2], etc. Furthermore, regardless of the order in which the even and odd
pieces are connected, the slope of the wavefunction is symmetric around the spikes of the
potential.

The state with the lowest energy would consist of a chain of even pieces, because,
unlike the odd pieces which have a root at the midpoint, the even pieces are equal to zero
nowhere. Thus the odd pieces have a higher− ∫ dz |9|4/2, which is the exact energy if9
is an exact solution of the equations that minimize the energy functional.

The next lowest energy would correspond to the state with only one odd piece. This is
the state in figure 2. It is presumed here that the change from the chain of negative pieces
to the chain of positive pieces occurs within just one spacing. The circumstances under
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which this will happen will be explored later.
The state mentioned above is followed by the state with two odd pieces, and so on,

up to the highest state, which has only odd pieces. In fact, ifFe andFo is the energy in
[n − 1

2, n + 1
2] for the even and odd trial wavefunctions respectively, then the energy of a

state withm even pieces andn odd pieces ismFe+nFo. Thus, the total energy per interval
is (mFe+nFo)/(m+n). In particular, the energy per interval isFe for the uniform chain of
even pieces, i.e. the ground state, and(mFe + Fo)/(m+ 1) for the state with only one odd
piece, i.e. the state of figure 2. For aninf inite number of spikes (m→∞), the two states
aredegenerate, as expected. Of course, the same holds for a state with infinitely many even
pieces, but only two odd pieces. If the number of odd pieces becomes substantial, then the
energy of the state will definitely be higher than that of the ground state.

For a large but finite number of spikes we still expect all these various states to be
degenerate, as long as the minimum value of the even pieces is practically zero, because in
that case|9|4 is essentially the same for both even and odd pieces. We shall verify this by
explicit calculation, using our variational wavefunctions.

We note that9en(n)→ 0 whenγ → ∞. Therefore the degeneracy mentioned above
requires thatγ is very large. Therefore, we shall neglect terms such as sech(γ /2). In this
limit,

Fe ≈ νγ |ψ |2+ |ψ |
4

4γ
+
∫ n+ 1

2

n− 1
2

dz u(z)|ψ |2 cosh2[γ (z − n)]
cosh2(γ /2)

+O(e−γ ) (2.3)

Fo ≈ νγ |ψ |2+ |ψ |
4

4γ
+
∫ n+ 1

2

n− 1
2

dz u(z)|ψ |2 sinh2[γ (z − n)]
sinh2(γ /2)

+O(e−γ ). (2.4)

Hence, since cosh2(γ /2) ≈ sinh2(γ /2) ≈ eγ /4,

Fo − Fe ≈ −
∫ n+ 1

2

n− 1
2

dz 4e−γ u(z)|ψ |2. (2.5)

And sinceγ is large, and terms of order O(e−γ ) have been dropped in this calculation,
equation (2.5) implies thatFo ≈ Fe. In other words, if9en(n) ≈ 0, then all the possible
states are practically degenerate, even for a finite large number of spikes, because they
consist of odd and even pieces only, pieces which were shown to have the same energy.
Note that our results are very general so far. The only restriction is that theγ that minimizes
equation (2.3) is large. Our conclusions are valid forany u(z) that can lead to a largeγ .

We illustrate the above general conclusions by restricting ourselves now to the Kronig–
Penney model:

u(z) = 1−
∑
n

αδ(z − n− 1
2). (2.6)

This choice ofu(z), whereα is a positive constant, implies that there is a periodic chain of
deep quantum wells along the z-axis.

For this choice ofu(z) then, and in the limit of largeγ , we obtain

Fo ≈ Fe ≈ |ψ |2
[
νγ + 1

γ
− α

]
+ |ψ |

4

4γ
. (2.7)

Minimization with respect to|ψ |2 gives

|ψ |2 = 2γ

[
α − νγ − 1

γ

]
(2.8)
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and

Fo ≈ Fe ≈ −γ
[
α − νγ − 1

γ

]2

. (2.9)

Minimization with respect toγ yields

γ = α +√α2+ 12ν

6ν
(2.10)

or equivalently 3νγ − α = 1/γ , in which case|ψ |2 = 4νγ 2 − 4. Sinceγ � 1, we shall
have

γ ≈ α/3ν � 1. (2.11)

Since|ψ |2 > 0, we must also haveγ > 1/
√
ν, which implies

α2 > 4ν. (2.12)

Therefore,wheneverν and α satisfy therestrictions of equations (2.11) and (2.12), we
expect all the possible states to be essentially degenerate. In particular, thehighestexcited
state, the one consisting of odd pieces only, isdegeneratewith the ground state, which is a
chain of even pieces. Note furthermore that the wavefunction is only nonzero ifν 6 α2/4.
When in factν = α2/4, we have a transition to a zero wavefunction, even thoughγ , which
then takes the value 1/

√
ν, may be quite large.

As a numerical illustration, we choose the caseν = 0.01,α = 1. Then the ground state
and the highest excited state (only even or only odd pieces respectively) have an energy
of −13.5207 in this variational model, withγ = 34.305 andψ = 6.56. The exact energy
can be found using the methods of section 3, and it is−14.933 for both the ground state
and the highest state, whileψ = 6.93. So both calculations indicate that all the states are
degenerate, for this particular choice ofν andα.

The example whereu(z) is given by equation (2.6) will also be examined in section 3,
since it can be solved exactly. We can generalize forany simple oscillatoryu(z), as long
asγ is very large.

3. Exact solutions

In this section we shall solve the model of equations (1.4) and (2.6) exactly, verifying thus
the variational results of the previous section. We shall be interested inthosevalues of the
parametersν andα that yield excited statesalmost degeneratewith the ground state.

We should note that a largeν would imply that the kinetic energy is dominant, making
thus the wavefunction too stiff. In other words, the ground-state wavefunction would come
as closely as possible to a constant, a choice that minimizes the kinetic energy. In that case
the minimum value of the ground-state wavefunction would be far from zero.

On the other hand, ifν were exactly zero, then the wavefunction would follow the
variations ofu(z) exactly. Hence, we need a small value ofν if we are going to have an
excited state that is close in energy to the ground state, since the wavefunction of such a
state varies dramatically between the spikes. Furthermore, ifν is zero the wavefunction
will have arbitrary signs at the wells, in which case the various excited states will all be
degenerate with the ground state. For smallν, this degeneracy will not be altered too
drastically.
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We shall be interested therefore in the exact solutions of this model, for smallν. The
energy functional is minimized when

ν
∂29

∂z2
=
[

1−
∑
n

αδ(z − n− 1
2)

]
9 + |9|29. (3.1)

The solution9(z) will have periodic features similar to those ofu(z). Integrating
equation (3.1) gives the boundary condition for9(z)

−α9
(
n+ 1

2

)
= ν

[
∂9

∂z

(
n+ 1

2

)
+
− ∂9
∂z

(
n+ 1

2

)
−

]
. (3.2)

Thus9(z) has a kink at each spike of the potential, due to theδ-functions.
Direct integration of equation (3.1) after multiplying it by∂9/∂z gives the solution in

each interval. The ground state has no node, hence9 will have a minimum at the middle
of each interval, while it will be symmetric around each spike. Thus, theexactground state
is found to be

9(z) = q

cn

[√
(1+ q2)/ν(z − n), (2+ q2)/(2+ 2q2)

] (3.3)

for n− 1
2 6 z 6 n+ 1

2, extended periodically everywhere else. Herecn is a Jacobi elliptic
function, andq = 9(n) is the minimum value of9(z). The above expression is valid for
any value ofν, large or small, and we can easily verify that it satisfies equation (3.1).

The boundary conditions of equation (3.2) require then that

α = 2ν

√
1+ q2

ν

sn

[√
1+q2

4ν ,
2+q2

2+2q2

]
dn

[√
1+q2

4ν ,
2+q2

2+2q2

]
cn

[√
1+q2

4ν ,
2+q2

2+2q2

] (3.4)

where thedn and sn are also Jacobi elliptic functions. This equation determinesq as a
function ofα andν. Note that there is always a ground state, since we can always find an
appropriateq for a given choice ofν andα.

In the limit of a wavefunction localized around the spikes of the potential we expectq

to be small. Then equation (3.3) reduces to

9(z) ≈ q cosh[(z − n)/√ν]. (3.5)

This is precisely the solution of the linear Kronig–Penney model, as expected, since for
very smallq the nonlinear terms become unimportant. Ifq = 0, equation (3.4) yields

α = 2
√
ν tanh(1/2

√
ν). (3.6)

So a nonzero ground state will exist only ifα > 2
√
ν tanh(1/2

√
ν). Note that for smallν

this becomes the restriction of equation (2.12), as it should. Furthermore, ifα is close to its
lower limit, then the change of sign of9 for a first excited state will have to spread over
a few more spikes of the potential, and it will not be restricted to just the region between
two successive spikes. In this paper we shall not be concerned with this possibility, and we
shall restrict our attention to values ofα far from the lower bound of equation (3.6). Then
the change of sign for the excited states occurs within just one spacing.

Now the Jacobi elliptic functioncn(x,m) is a periodic function, with roots at the

odd multiples of the elliptic functionK(m), where K(m) = ∫ π/2
0 dθ/

√
1−m sin2 θ .

Indeed, cn(0, m) = 1, cn(K(m),m) = 0, cn(2K(m),m) = −1, cn(3K(m),m) = 0,
cn(4K(m),m) = 1.
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The ground state, as mentioned in the previous section, must consist of even pieces
everywhere, of the form given by equation (3.3). It must therefore be positive everywhere,
since it is continuous. So the9 of equation (3.3) must not be allowed to become negative.
This means that the quantity

√
(1+ q2)/ν|z−n| must be smaller thanK((2+q2)/(2+2q2))

within the interval [n− 1
2, n+ 1

2]. Hence

1

2

√
(1+ q2)/ν 6 K

(
2+ q2

2+ 2q2

)
. (3.7)

This inequality holds for any values ofα andν. If ν is small, then the right-hand side of
this inequality has to be large. This happens when the argument ofK(m) is close to 1, in
which caseK(m) ≈ ln

√
16/(1−m). In this particular case, the argument is 1 ifq is very

small. Thus, ifν is small,q must be small.
Furthermore, when inequality (3.7) becomes an equality, the denominator in

equation (3.3) tends to zero atz = n + 1
2, and therefore the value of9(z) at the spikes

becomes infinite. In other words, the value of9 at the spikes can be much larger than the
value of9 at the midpoints.

Indeed9(n− 1
2)/9(n) = 1/cn[

√
(1+ q2)/4ν, (2+ q2)/(2+ 2q2)]. Hence, ifq → 0,

9( 1
2)/9(1) ≈ cosh(1/

√
4ν), which tends to infinity whenν tends to zero. Thus, the even

pieces of9 become very deep ifν is small, because in that caseq → 0 and9(n ± 1
2) is

very large.
We say in that case that the wells are weakly coupled. Note that in that case the|9|4 of

an even piece would not differ too much from the|9|4 of an odd piece. In other words, we
expect the various possible states to be very close in energy to the ground state, as already
mentioned in section 2. Indeed, the caseν = 0 would correspond to a complete decoupling
of the values of the wavefunctions at the spikes of the potential, and hence to a complete
degeneracy of all the various states.

Let us examine more thoroughly the singularities that may arise in the behaviour of9.
We said that9(z) becomes very large at the spikes of the potential when inequality (3.7)
becomes almost an equality:√

(1+ q2)/4ν ≈ K
(

2+ q2

2+ 2q2

)
. (3.8)

But if m is very close to 1, thenK(m) ≈ ln
√

16/(1−m). Hence, this approximate equality
reduces for smallq to 1/2

√
ν ≈ ln(

√
32/q2), whence

q ≈
√

32e−1/2
√
ν . (3.9)

Hence, if ν is small, and if the ground-state wavefunction has deep cups, we must have
q ≈ √32 exp(−1/2

√
ν). Note that even thoughq is small, the value of the wavefunction

at the minima of the potential is large. None the less, sinceq → 0, the wavefunction is
again given by equation (3.5), an equation that tells us that9(z) falls to 1/e of its value
within a distance of

√
ν from the spikes. In that sense we can say that the ‘thickness’ of9

at each spike is 2
√
ν. But the peaks of9 would overlap when the thickness of each peak

equals the distance between successive peaks. This happens whenν = 1
4. When we speak

therefore of weakly coupled wells, we mean thatν � 1
4. And it is only such wells that can

lead to an essentially degenerate spectrum of states.
Let us then summarize our results for the ground state. There is always a ground state,

with q = 9(n) being the minimum value of9 in the interval [n − 1
2, n + 1

2]. This is a
symmetric series of even pieces, and it resembles a chain of symmetric cups (see figure 3).
The absolute value of the slope of9 at the layers isα9(n + 1

2)/2ν. This ground state
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Figure 3. The ground state, forδ-function wells.

will be degenerate with any other states if their|9|4’s are approximately the same. This
can happen only ifq is almost zero, as explained in section 2, because then the minimum
of the |9|4 of the even piece approaches the minimum of|9|4 of the odd piece, i.e. zero.
But q can be tiny, and9 still have a substantially nonzero value, only close to the roots of
the Jacobi elliptic functioncn (see equation (3.3)), i.e. forq ≈ √32e−1/2

√
ν . Furthermore,

q needs to be small in order to have the degeneracy. Hence,ν must be small. Indeed,
the thickness 2

√
ν of each well implies that the wavefunctions around the spikes will not

overlap substantially, providedν � 1
4. For smallν we then obtain a ground state which

resembles a chain of deep cups (see figure 3).
Let us now proceed to the first excited state (see figure 2). Here we assume again that

ν is small, and hence the even pieces will resemble deep cups. There will be only one
odd piece, in the interval [− 1

2,
1
2], connecting a chain of negative even pieces with a chain

of positive even pieces. The characteristics of the many even pieces will not be altered,
because there is only one odd piece. In contrast, the characteristics of the odd piece will
be determined from those of the even pieces, through the boundary conditions.

Direct integration of equation (3.1) after multiplying it by∂9/∂z will give the solution
in the interval [− 1

2,
1
2], as long as we use the fact that9(0) = 0, since there is one node

there. For the first excited state there is only one node, thus all the pieces outside the
interval [− 1

2,
1
2] will be even.

One can show thus that for− 1
2 6 z 6

1
2 we obtain theexact solution

9(z) = √1− ε sn[z
√
(1+ ε)/2ν, 2ε/(1+ ε)]

cn[z
√
(1+ ε)/2ν, 2ε/(1+ ε)] (3.10)

with 9 ′(0) =
√
(1− ε2)/2ν and 06 ε 6 1. We can easily verify that this expression

satisfies equation (3.1). The value of9(z) at z = 1
2, as calculated from equation (3.10),

must be equal to the one that can be calculated from equation (3.3). This relation determines
the parameterε. If the even pieces are deep enough, i.e. ifν is small enough, then the slope
of 9(z) at ( 1

2)− will turn out to beα9( 1
2)/2ν.

Indeed, we saw that if for smallν the value of9 at the spikes of the potential is very
large, thenq ≈ √32e−1/2

√
ν . In general, the even and odd pieces correspond to the same

energy if9 is very large at the spikes,q being quite small. But if9( 1
2) is very large, then

equation (3.10) implies thatcn[
√
(1+ ε)/8ν, 2ε/(1+ ε)] ≈ 0, so as to make9(z) almost
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diverge. Consequently√
(1+ ε)/8ν ≈ K[2ε/(1+ ε)] (3.11)

whereK is the elliptic functionK(m) = ∫ π/20 dθ/
√

1−m sin2 θ . And sinceν is small, the
value ofK will have to be rather large, which means that 2ε/(1+ ε) → 1, i.e. ε → 1.
Indeed, remembering thatK(m) ≈ ln

√
16/(1−m) whenm→ 1, we can easily find that

equation (3.11) is solved by the value

1− ε ≈ 32e−1/
√
ν . (3.12)

So this value ofε yields a very large9( 1
2), for small ν. In fact, we must have in general,

for any ν, √
(1+ ε)/8ν 6 K[2ε/(1+ ε)] (3.13)

otherwise the elliptic functioncn would obtain a root in [0, 1
2] and 9(z) would have a

vertical asymptote there.
We can now check the value of9( 1

2). The second argument of the elliptic functionssn,
dn andcn is (2+q2)/(2+2q2) for the even pieces and 2ε/(1+ε) for the odd pieces, both of
which will equal 1−16e−1/

√
ν when equations (3.9) and (3.12) hold, i.e. for very large values

of 9( 1
2). Therefore for very smallν this second argument is essentially 1, in which case

the sn becomes tanh, thecn becomes sech, and thedn becomes sech. Then equation (3.10)
gives9(z) ≈ √1− ε sinh(z

√
(1+ ε)/2ν) in [− 1

2,
1
2], and9(z) ≈ q cosh[(z − n)/√ν] in

[n − 1
2, n + 1

2], wheren 6= 0. Both expressions then give the same values for9( 1
2) and

|9 ′( 1
2)|, as expected.

The procedure for finding the first excited state then consists of finding the value ofε

that would ensure continuity of9(z) at z = 1
2. In that case the slope atz = ( 1

2)− will turn
out automatically to be the exact opposite of the slope atz = ( 1

2)+. Finding the ground state,
on the other hand, simply requires finding aq such that|9 ′(n + 1

2)| = (α/2ν)9(n + 1
2).

This relation is precisely equation (3.4).
Finally, we can find the highest excited state, the one consisting of odd pieces only, by

extending periodically the odd solution of equation (3.10), and finding a value ofε such
that |9 ′(n+ 1

2)| = (α/2ν)9(n+ 1
2). Since the minimum valueq of the even piece for the

solutions that interest us is
√

32e−1/2
√
ν , i.e. practically zero, the energy of the even piece

and of the odd piece is essentially the same since they have the same− ∫ dz |9|4/2. And
all the states are then degenerate.

It is interesting to note thatα = 2ν9 ′( 1
2)/9(

1
2)→ 4ν + 1

3 if ν →∞, for the9(z) of
equation (3.10). Hence, the highest state does not exist whenν →∞, unlessα = 4ν + 1

3.
Similarly, quite a few other excited states do not exist for large values ofν. The even
ground state always exists, ifα is above the lower bound of equation (3.6). We present
numerical values of the parameters and energies of the ground state, of the first excited state
and of the highest state in tables 1–3 for various choices ofν andα.

Note that for a given choice ofν, large or small, and a given value ofα greater than
the lower bound of equation (3.6),q is given by equation (3.4). But it is only smallν’s,
andα’s quite far from their lower bound, that will lead to a ground state with deep even
pieces. In that caseq is given by equation (3.9), and the ground state will be practically
degenerate with the first few excited states.
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Table 1. Parameters of the ground state forδ-function wells, for various choices ofν andα.
Eg is the energy per interval.

ν α 9(1) = q 9( 1
2) −9 ′( 1

2)+ Eg

0.002 1 7.2× 10−5 15.748 3 937 −81.452 6
0.01 0.25 0.012 7 1.060 8 13.260 1 −0.0271 0
0.01 1 0.031 074 6.928 21 346.41 −14.933 4
0.01 10 0.037 283 70.696 5 35 348.3 −16 646.9
0.05 1 0.346 47 2.834 02 28.340 2 −1.959 03
0.05 10 0.511 176 31.591 1 3 159.11 −3 314
0.1 1 0.497 576 1.781 92 8.909 62 −0.599 64

Table 2. Parameters of the first excited state forδ-function wells, for various choices ofν and
α. E1 is the energy in [− 1

2 ,
1
2 ]. For the other intervals, the energy is theEg given in table 1.

ν α q ε 9( 1
2) 9 ′( 1

2)− E1

0.002 1 7.2× 10−5 1-5.2× 10−9 15.748 3 937 −81.452 6
0.01 0.25 0.012 7 0.999 838 1.060 8 13.261 3 −0.027 094
0.01 1 0.031 074 0.999 03 6.928 2 346.41 −14.933 3
0.01 10 0.037 283 0.998 598 70.696 35 348.3 −16 646.9
0.05 1 0.346 47 0.823 56 2.834 0 28.441 7 −1.924 45
0.05 10 0.511 176 0.363 395 31.591 3 159.12 −3 313.85
0.1 1 0.497 576 0.424 940 1.781 9 9.287 66 −0.526 821

Table 3. Parameters of the highest state forδ-function wells, for various choices ofν andα.
Eh is the energy per interval.

ν α ε 9( 1
2) 9 ′( 1

2)− Eh

0.002 1 1-5.2x10−9 15.748 3 937 −81.452 6
0.01 0.25 0.999 838 1.060 5 13.256 5 −0.027 07
0.01 1 0.999 03 6.928 2 346.41 −14.933 2
0.01 10 0.998 598 70.696 35 348.3 −16 646.9
0.05 1 0.824 42 2.821 3 28.213 −1.895 82
0.05 10 0.363 395 31.591 3 159.11 −3 313.84
0.1 1 0.516 054 1.652 7 8.263 45 −0.401 57
1 4.34 0.730 536 0.251 8 0.546 42 −0.000 38

4. A potential with Gaussian wells

We shall examine numerically the bound states that correspond to the choice

u(z) = 1− g
∑
n

exp[−b(z − n− 1
2)

2] (4.1)

shown in figure 4. We choose the parameters so that eb/4 > g > 1. Thenu(z) is negative at
its minima and positive at the midpoints between the minima. Therefore, ifν were exactly
zero, then there would be a nonzero wavefunction at the minima ofu(z), but there would be
a region around the midpoints where9 would be exactly zero. Whenν is slightly positive,
the stiffness of the wavefunction makes9 leak into the ‘forbidden’ regions (tunnelling).
If, however,b < 4 lng, then there is no tunnelling. We need a large enoughb in order to
obtain tunnelling.
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Figure 4. The potentialu(z) for Gaussian wells (g = 2.5, b = 20).

Figure 5. The ground state, the first excited state, and the highest state, for 20 Gaussian wells
with ν = 0.01, g = 2.5, b = 20, with the corresponding energies per interval.

If, on the other hand,b is extremely large, whileg remains finite, the width of each
well is reduced, its strength remaining unaltered. We expect therefore that for a giveng

we cannot increaseb indefinitely, because we shall not be able to find a solution. The
numerical calculations do indeed verify this.
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Figure 6. The ground state, the first excited state, and the highest state, for 20 Gaussian wells
with ν = 0.05, g = 2.5, b = 20, with the corresponding energies per interval.

Thus, ifb is large enough, but not too large, and ifg is large enough to allow a nonzero
solution, we shall have a competition between the kinetic energy and the rest of the energy.
The latter forces9 to follow the variations ofu(z). The kinetic energy, on the other hand,
wants9 to be constant in space. Solutions such as the one in figure 2 will be relevant
for small ν, since large values ofν tend to push9 towards a constant. Indeed, numerical
calculations verify that for largeν (e.g. ν = 0.3), the kinetic energy is strong enough to
force9max to be close to9min, and9min� 0. The ground state is then a chain of shallow
little cups away from zero.

Excited states that will be almost degenerate in energy with the ground state will appear
at small values ofν, when the minimum of the ground-state wavefunction between the wells
is very small, while9max� 0. Figure 5 shows the ground state, the first excited state, and
the highest excited state, forν = 0.01, with the corresponding energies per interval, for a
sample of 20 Gaussian wells. Figure 6 shows the same states, but forν = 0.05. We see
again the characteristics mentioned earlier: full degeneracy ifν is small enough, in which
case the minimum of9 between the wells is quite small compared with its value9max at
the wells. The value of9max depends strongly ong.

Remember also that the energy difference between the ground state and the first excited
state is strictly equal to zero for an infinite number of wells. This is due to the fact
that the wavefunction of the first excited state is exactly equal or exactly opposite to the
wavefunction of the ground state on almost all of the infinitely many wells. Indeed, in
figures 7 and 8 we see the first excited state for a fairly large value ofν, and a series of
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Figure 7. First excited state for Gaussian wells withν = 0.1, b = 20, andg = 2.2, 2.5 and 5.

Figure 8. First excited state for Gaussian wells withν = 0.1, g = 2.5 andb = 5, 10, 20, and
25.

values forb andg. Here the stiffness of the wavefunction is quite large, so the change of
the sign cannot take place within just one interval. This change now occurs over three or
four wells. For small values ofν though, when the wavefunction is quite malleable, the
wavefunction changes sign within one interval.

5. Conclusions

We have studied the bound states of a nonlinear version of the Schrödinger equation for the
Kronig–Penney model, a version that is relevant to quite a few phenomena in condensed
matter physics.

We have seen that there is a substantial range of parameters, not just for the Kronig–
Penney model but for other simple oscillatory choices ofu(z) as well, for which the various
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states are essentially degenerate in energy. This degeneracy requires thatν is small enough,
so as to allow the wavefunction to have a small, but nonnegligible, value at the midpoints
between the wells. At the same time, the value of the wavefunction at the wells can be
quite substantial. Then there is very little cost in having9 change sign in going from one
well to the next. In fact, the energy differences are really small when9max� 9min. This
means that the lower excited states, which connect regions of positive9 with regions of
negative9, become as favourable as the ground state. This degeneracy is exact in the limit
of infinitely many quantum wells for these lower excited states. Even the highest excited
state though, which consists of odd pieces only, has an energy very close to the energy of
the ground state for sufficiently smallν.

We demonstrated this basic idea in section 2 through a variational calculation valid for
a generic oscillatory potential. The variational results were confirmed through the exact
solution of the nonlinear Kronig–Penney model, presented in section 3, as well as through
a numerical calculation for the case of another simple oscillatory potential, presented in
section 4. All these calculations show the exact (for infinitely many spikes) or approximate
(for finitely many spikes) degeneracy of the ground state.
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