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Abstract. We study the bound states of a Kronig Penney potential for a nonlinear one-
dimensional Sclirdinger equation. This potential consists of a large, but not necessarily infinite,
number of equidistani-function wells. We show that the ground state can be highly degenerate.
Under certain conditions furthermore, even the bound state that would normally be the highest
can have almost the same energy as the ground state. This holds for other simple periodic
potentials as well.

1. Introduction

In this paper we shall study an unusual generalization of the one-dimensional Kronig—Penney
model. We shall examine in particular the spectrum of the bound states for a Kronig—Penney
potential V (z), having added a nonlinear term to the Sufinger equation. Our arguments

will be valid in the case of other simple periodic potentials as well.

Such nonlinear equations with periodic potentials arise in the Ginzburg—Landau
treatment of various phenomena in condensed matter physics. In layered superconductors
for example, such as the high temperature ones, a periodic potential such as the Kronig—
Penney potential can describe the periodically modulated superconductivity of the samples
[1]. Spatially varying parameters in the nonlinear Sclinger equation were also used to
describe the periodic variation of the impurity concentration in superconductors [2], high
T. Josephson field effect transistors [3], as well as grain boundaries in superconducting
bicrystals [4], while nonlinear Kronig—Penney models were used for studying twinning-
plane superconductivity [5]. The nonlinear Satlinger equation must be used in order to
describe all these various phenomena, including the relevant phase transitions. The nonlinear
Schibdinger equation has been studied repeatedly, but mostly with regards to its solitons
[6], and usually for nonperiodic potentials. In this work the emphasis is placed on studying
the bound states, rather than solitons.

We shall study the excited states for the equation

R? 92w
2M 3z2
The nonlinear term forbids the arbitrary normalizationJof

The potential we have in mind is a Kronig—Penney potential, but it could be in general
any simple oscillatory potential. In this work we choose

V(z)=Vo|:1—a28<2—n—;)] 1.2)
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+ V()W + B|¥|?¥ = 0. (1.1)
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with « and V, being positive. The crucial parameter in this potential is the periodicity
lengthd. The number of wells is large, but not necessarily infinite.
Equation (1.1) minimizes the energy functional

B2 | 9w |2
2 4 R el
/dz[V(z)I\DI + BY| /2+2M 3z :| (1.3)
For M — oo we would have|W|?> = —V(z)/B, in which case|W|?> would follow the

periodicity of V(z). If the nonlinear term is omitted, the usual Kronig—Penney model is
recovered. In that limit—Vy is the energy, andV; is the strength of each attractive
s-function.

We can write the energy functional in dimensionless form, by measuriimgunits of
d, the distance between successive spikes of the potertia, units of ./Vy/B8, and the
energy in units of?VZ/B, whereVj is the positive constant that appears in equation (1.2),
and has the dimensions &f(z). This constant is taken out df(z), so as to render it
dimensionless. In other word¥/(z)/ Vo = u(z), whereu(z) is dimensionless. If we
then define the dimensionless parametes 71%/2M Vod?, the energy functional takes the
dimensionless form

2
/dz[u(z)l\lf|2+|l11|4/2+v a‘: ] (1.4)

Note that when the quartic term is omitted, we recover the usual linear Kronig—Penney
model, with energyE = —h?/2Mvd?. In this case the energy values can be found only
after imposing periodic boundary conditions ph|2. There are then only certain allowed
values ofv, for a given value ofx. The size of the wavefunction is determined by the
normalization, and when we minimize the energy functional under this constraint, we find
the energy eigenvalues, i.e. the minima of the energy functional.

In the nonlinear case, on the other hand, the siz& ¢ determined by the nonlinear
terms, through the unconstrained minimization of the functional of equation (1.4). These
nonlinear terms determine fully the behaviour @f without any need for boundary
conditions. In fact, a periodis(z) will give a periodic|W|?. Furthermore, the parameters
« andv are now independent, and for any pair of valuesx@ndv we can find a solution
W, as long asx is sufficiently large. We shall see later what the lower boundxois
precisely. The energy of each state will be simply the value of the energy functional (1.4)
at its minimum.

We see from equation (1.4) that for— 0, when the potential is very strong, or very
weakly periodic, we obtaii/|> — —u(z). Thus,¥ follows the periodicity of the structure
very closely, since it can change very abruptly. In this limit the signvab arbitrary. So
if the spikes of the potential are very far apafti¢ long), the sign of¢ could be positive
or negative at each spike (see figura))(

Let us now switch on slowly the parameterbringing the teeth of the potential comb
closer together. Then the wavefunction between neighbouring spikes could have two forms.
If the wavefunction on two successive spikes A and B is positive, say, then the wavefunction
in the intervening region will be reduced, and it will go through a positive minimum
value, although always remaining positive (figurd))( If, however, the wavefunction
changes sign in going from spike B to spike C, then it must pass through a point halfway
between the spikes where it is exactly zero (see figung).1Since the wavefunctiod (z)
minimizes the functional of equation (1.4), the energy equalfdz |¥[*/2, as can be
deduced by combining the dimensionless forms of equations (1.1) and (1.3). Consequently
the wavefunction has less energy if it does not go through zero, always maintaining the
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Figure 1. (a) A typical wavefunction when the potential wells are very far apart(0). (b) A
typical wavefunction when the potential wells are closer togetheg (1).

same sign. Indeed, in that case the minimumf*/2 is not zero, and hence the area
under|¥|*/2 is greater.

It seems therefore more favourable for the wavefunction to have the same sign on all
spikes of the potential. We say that the ground state isigormly positivestate then.

If the spikes of the potential are too far from each other however, the minimum value of
the wavefunction between them would be practically zero, and in that casenttoemly

positive state (wherel has the same sign at all spikes) becomes degenerate in energy with
states that may hawe take on negative values at some spikes, and positive values at others.

We can, for example, have a state that is infinitesimally higher in energy compared
with the uniformly positive ground state, and hence practically equally preferable, even for
spikes not too far apart. This state, wdh0) = 0, ¥(z) > 0 whenz > 0, and¥(z) < 0
whenz < 0, connects regions of different signs of the wavefunction (see figure 2). Then
in the intermediate regiod has to go through zero, and we obtain a region that reminds
us of a domain wall. For a potential withfinitely many spikes, the energetically costly
root of ¥ occurs only once, and hence the energy of this state is equal to the energy of the
uniformly positive ground state.

Therefore there can be bound states of equation (1.1) that are degenerate to the ground
state, not being positive everywhere. It is the purpose of this paper to study such bound
states, first through a general variational model (section 2), and then through an exact
study of the Kronig—Penney potential (section 3), as well as through a numerical study of
a periodic potential with Gaussian wells (section 4). We summarize our conclusions in
section 5.

2. Variational study

In this section we shall examine the possibility of haviigchange sign in going from one
spike of the potential to the next, as well as the possibility of hayimgith the same sign
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Figure 2. First excited state with the root at= 0, for §-function wells.

on neighbouring spikes. In the first cageis odd with respect to the midpoint between the
two spikes, while in the second case it is even. An arbitrary state of the system will then
be a combination of even and odd pieces. In other wotdsyill be even between certain
neighbouring spikes of the potential, and odd between others. ¥hudl] maintain its sign
between some spikes, and it will change sign between others. For example, in figure 1(
W is odd in one interval, and even in the other two, while in figure 2 it is even everywhere,
except for the interval at the centre.

We have assumed that the spikes of the potential are:aﬁ+%, wheren is any integer.
Let us examine then the two neighbouring quantum wells at the ends of the intepvél,[
n + %]. We adopt the following odd and even trial wavefunctions, with respect to the

midpoint ¢ = n), defined on the intervah[— }.n + 3]:
_ sinhfy (z — n)]
W, (2) = iWW (2-1)
_ coshy(z —n)]
Wy (2) = £ [W secr’r(y/Z)} cottf(y/2) (2.2)

where ¢ and y are variational parameters. We note thiat,(n) = 0, ¥,,(n + %) =
—W,,(n — 3 = £y, and ¥, (n + 1) = ¥, (n — 1) = Lyycothy/2). Similarly
W, (n) = Eycoshy/2) — 1]/sinff(y/2), We(n + 3) = Vo, — 3) = ¢, and
W), (n+3) =—W,, (n—3) =gy cothy/2).

These wavefunctions are such that they can be joined together in any order to form a
continuous wavefunction everywhere, consisting of even and odd pieces. We could have,
for example,¥ = W, in[n — S,n+ 3, ¥ = We,pain[n+ 30+ 3] ¥ = -V,
in [n+ i;‘n + g], etc. Furthermore, regardless of the order in which the even and odd
pieces are connected, the slope of the wavefunction is symmetric around the spikes of the
potential.

The state with the lowest energy would consist of a chain of even pieces, because,
unlike the odd pieces which have a root at the midpoint, the even pieces are equal to zero
nowhere. Thus the odd pieces have a highgidz |¥|*/2, which is the exact energy iF
is an exact solution of the equations that minimize the energy functional.

The next lowest energy would correspond to the state with only one odd piece. This is
the state in figure 2. It is presumed here that the change from the chain of negative pieces
to the chain of positive pieces occurs within just one spacing. The circumstances under
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which this will happen will be explored later.

The state mentioned above is followed by the state with two odd pieces, and so on,
up to the highest state, which has only odd pieces. In fack, ind F, is the energy in
[n—31n+ %] for the even and odd trial wavefunctions respectively, then the energy of a
state withm even pieces and odd pieces isn F, +nF,. Thus, the total energy per interval
is(mF,+nF,)/(m+n). In particular, the energy per interval £ for the uniform chain of
even pieces, i.e. the ground state, amd”, + F,)/(m + 1) for the state with only one odd
piece, i.e. the state of figure 2. For aryinite number of spikesif — o0), the two states
aredegenerateas expected. Of course, the same holds for a state with infinitely many even
pieces, but only two odd pieces. If the number of odd pieces becomes substantial, then the
energy of the state will definitely be higher than that of the ground state.

For a large but finite number of spikes we still expect all these various states to be
degenerate, as long as the minimum value of the even pieces is practically zero, because in
that casgW|* is essentially the same for both even and odd pieces. We shall verify this by
explicit calculation, using our variational wavefunctions.

We note thatv,,(n) — 0 wheny — oo. Therefore the degeneracy mentioned above
requires that is very large. Therefore, we shall neglect terms such as(g¢2h In this
limit,

F, ~vy|y|? +7+ dz u(2)|y|

it 2Costy (z — n)] .
—_— 2.
/,; ¢ cost(y/2) ToeEn) 23

2

I /*5 PSPy =m] |
F, = vyl 4+ 4y + - dz u(z)|y| sint(y/2) +0E™). (2.4)

2

Hence, since cogly /2) ~ sintf(y/2) ~ e’ /4,

n-‘,——1
F,—F, ~ _f 12 dz 47 u(z)|v |2 (2.5)
I‘L*é
And sincey is large, and terms of order(®7") have been dropped in this calculation,
equation (2.5) implies thak, ~ F,. In other words, if¥,,(n) ~ 0, then all the possible
states are practically degenerate, even for a finite large number of spikes, because they
consist of odd and even pieces only, pieces which were shown to have the same energy.
Note that our results are very general so far. The only restriction is that that minimizes
equation (2.3) is large. Our conclusions are validday u(z) that can lead to a largge.
We illustrate the above general conclusions by restricting ourselves now to the Kronig—
Penney model:

u(z)=1-Y adz—n—3). (2.6)
This choice ofu(z), wherec is a positive constant, implies that there is a periodic chain of

deep quantum wells along the z-axis.
For this choice of«(z) then, and in the limit of large, we obtain

1
E;%Fe%|1/’|2[‘))/+y—a:|+ (27)
Minimization with respect tdy|? gives

ly|? =2y [a —vy — 1} (2.8)
Y
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and

172
F,~F,~—y |:a—vy—:| . (2.9
14

Minimization with respect tg/ yields

o+ Vo241
V=————""F( """

o (2.10)

or equivalently 3y —« = 1/y, in which cas€v|? = 4vy? — 4. Sincey > 1, we shall
have

y~a/3v> 1 (2.11)
Since|y|? > 0, we must also have > 1/,/v, which implies
a? > 4v. (2.12)

Therefore,wheneverv and « satisfy therestrictions of equations (2.11) and (2.12), we
expect all the possible states to be essentially degenerate. In particulhighlestexcited
state, the one consisting of odd pieces onlydegeneratavith the ground state, which is a
chain of even pieces. Note furthermore that the wavefunction is only nonzerd i&?/4.
When in facty = «?/4, we have a transition to a zero wavefunction, even thgughhich
then takes the value/1/v, may be quite large.

As a numerical illustration, we choose the case 0.01,« = 1. Then the ground state
and the highest excited state (only even or only odd pieces respectively) have an energy
of —135207 in this variational model, witlr = 34.305 andys = 6.56. The exact energy
can be found using the methods of section 3, and #12.933 for both the ground state
and the highest state, while = 6.93. So both calculations indicate that all the states are
degenerate, for this particular choicewfnda.

The example where(z) is given by equation (2.6) will also be examined in section 3,
since it can be solved exactly. We can generalizeafoy simple oscillatoryu(z), as long
asy is very large.

3. Exact solutions

In this section we shall solve the model of equations (1.4) and (2.6) exactly, verifying thus
the variational results of the previous section. We shall be interestéebgevalues of the
parameters anda that yield excited stateaslmost degeneratwith the ground state.

We should note that a largewould imply that the kinetic energy is dominant, making
thus the wavefunction too stiff. In other words, the ground-state wavefunction would come
as closely as possible to a constant, a choice that minimizes the kinetic energy. In that case
the minimum value of the ground-state wavefunction would be far from zero.

On the other hand, i were exactly zero, then the wavefunction would follow the
variations ofu(z) exactly. Hence, we need a small valuevoif we are going to have an
excited state that is close in energy to the ground state, since the wavefunction of such a
state varies dramatically between the spikes. Furthermone,isgfzero the wavefunction
will have arbitrary signs at the wells, in which case the various excited states will all be
degenerate with the ground state. For smallthis degeneracy will not be altered too
drastically.
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We shall be interested therefore in the exact solutions of this model, for smalke
energy functional is minimized when
%W 1 5
e l—ZaB(z—n—é) U+ |20, (3.1)
The solution W (z) will have periodic features similar to those af(z). Integrating
equation (3.1) gives the boundary condition fb(z)

(o [ () 2 (e D) ] @2

Thus W (z) has a kink at each spike of the potential, due to&Henctions.

Direct integration of equation (3.1) after multiplying it Iy /dz gives the solution in
each interval. The ground state has no node, h@neell have a minimum at the middle
of each interval, while it will be symmetric around each spike. Thusettaetground state
is found to be

W(z) = 1

cn [\/ A4+4g?/vz —n), 2+49%/2+ ZqZ)}

forn — % <z<n+ % extended periodically everywhere else. Heteis a Jacobi elliptic

function, andg = ¥ (n) is the minimum value of¥(z). The above expression is valid for

any value ofv, large or small, and we can easily verify that it satisfies equation (3.1).
The boundary conditions of equation (3.2) require then that

14¢2 244> 1+q2  244?
1442 sn [\/ a0 22 | A1 4 24242
o=2v
v [1+¢4%  2+42
cn |: 4y 242q2

where thedn andsn are also Jacobi elliptic functions. This equation determipess a
function of« andv. Note that there is always a ground state, since we can always find an
appropriateg for a given choice ob anda.

In the limit of a wavefunction localized around the spikes of the potential we expect
to be small. Then equation (3.3) reduces to

W(z) ~ g coshfz — n)//V]. (3.5)

This is precisely the solution of the linear Kronig—Penney model, as expected, since for
very smallg the nonlinear terms become unimportantg I 0, equation (3.4) yields

a = 2/vtanh(1/2/v). (3.6)

So a nonzero ground state will exist onlydif> 2,/vtanh(1/2,/v). Note that for smalb

this becomes the restriction of equation (2.12), as it should. Furthermards iflose to its

lower limit, then the change of sign &f for a first excited state will have to spread over

a few more spikes of the potential, and it will not be restricted to just the region between
two successive spikes. In this paper we shall not be concerned with this possibility, and we
shall restrict our attention to values effar from the lower bound of equation (3.6). Then

the change of sign for the excited states occurs within just one spacing.

Now the Jacobi elliptic functioren(x, m) is a periodic function, with roots at the
odd multiples of the elliptic functionk (m), where K(m) = fo”/z do/v/1 — msirf 6.
Indeed, cn(0,m) = 1, cn(K(m),m) = 0, cn(2K(m),m) = —1, cn(3K(m), m) = 0,
cn(4K (m), m) = 1.

(3.3)

(3.4)
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The ground state, as mentioned in the previous section, must consist of even pieces
everywhere, of the form given by equation (3.3). It must therefore be positive everywhere,
since it is continuous. So the of equation (3.3) must not be allowed to become negative.
This means that the quanti{/(l + ¢?)/v|z —n| must be smaller thak ((2+¢2)/(2+2?))

within the interval b — ,n + 3]. Hence

1 2+ ¢
parap<x(FiL). 37)
This inequality holds for any values of andv. If v is small, then the right-hand side of

this inequality has to be large. This happens when the argumekitie) is close to 1, in

which casek (m) ~ In \/16/(1 —m). In this particular case, the argument is Yifs very

small. Thus, ifv is small,g must be small.

Furthermore, when inequality (3.7) becomes an equality, the denominator in
equation (3.3) tends to zero at=n + % and therefore the value ob(z) at the spikes
becomes infinite. In other words, the valuewfat the spikes can be much larger than the
value of ¥ at the midpoints.

IndeedW (n — 2)/W(n) = 1/enly/(1+ g2 /4v, 2+ ¢%)/(2+ 29?)]. Hence, ifg — 0,
W(3)/ W (1) ~ coshl/+/4v), which tends to infinity whem tends to zero. Thus, the even
pieces of¥ become very deep if is small, because in that cage— 0 andW¥(n &+ %) is
very large.

We say in that case that the wells are weakly coupled. Note that in that caisi| thef
an even piece would not differ too much from thie|* of an odd piece. In other words, we
expect the various possible states to be very close in energy to the ground state, as already
mentioned in section 2. Indeed, the case 0 would correspond to a complete decoupling
of the values of the wavefunctions at the spikes of the potential, and hence to a complete
degeneracy of all the various states.

Let us examine more thoroughly the singularities that may arise in the behavidur of
We said that¥ (z) becomes very large at the spikes of the potential when inequality (3.7)
becomes almost an equality:

2+ ¢?
1+¢9)/dv~K|—F5). .
Newwayr (2+2q2) (3.8)
But if m is very close to 1, thelk (m) ~ In \/16/(1 — m). Hence, this approximate equality
reduces for smaly to 1/2,/v ~ In(,/32/¢%), whence

q ~ /3262, (3.9)

Hence, ifv is small, and if the ground-state wavefunction has deep cups, we must have
g ~ +/32exg—1/2,/v). Note that even though is small, the value of the wavefunction

at the minima of the potential is large. None the less, sipee 0, the wavefunction is
again given by equation (3.5), an equation that tells us ¥h@) falls to 1/e of its value
within a distance of/v from the spikes. In that sense we can say that the ‘thicknes#’ of

at each spike is.@v. But the peaks oft would overlap when the thickness of each peak
equals the distance between successive peaks. This happens whknWhen we speak
therefore of weakly coupled wells, we mean thak ;11. And it is only such wells that can
lead to an essentially degenerate spectrum of states.

Let us then summarize our results for the ground state. There is always a ground state,
with ¢ = W(n) being the minimum value o in the interval p — 3, n + 1]. Thisis a
symmetric series of even pieces, and it resembles a chain of symmetric cups (see figure 3).
The absolute value of the slope @f at the layers isxW(n + %)/Zv. This ground state
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UM

Figure 3. The ground state, fos-function wells.

will be degenerate with any other states if thpir|*’s are approximately the same. This
can happen only ify is almost zero, as explained in section 2, because then the minimum
of the |W|* of the even piece approaches the minimumbf* of the odd piece, i.e. zero.
But g can be tiny, andl still have a substantially nonzero value, only close to the roots of
the Jacobi elliptic functiorn (see equation (3.3)), i.e. far ~ /32 ¥2V". Furthermore,
g needs to be small in order to have the degeneracy. Henoayst be small. Indeed,
the thickness v of each well implies that the wavefunctions around the spikes will not
overlap substantially, provided « 211. For smallv we then obtain a ground state which
resembles a chain of deep cups (see figure 3).

Let us now proceed to the first excited state (see figure 2). Here we assume again that
v is small, and hence the even pieces will resemble deep cups. There will be only one
odd piece, in the interval—[%, %], connecting a chain of negative even pieces with a chain
of positive even pieces. The characteristics of the many even pieces will not be altered,
because there is only one odd piece. In contrast, the characteristics of the odd piece will
be determined from those of the even pieces, through the boundary conditions.

Direct integration of equation (3.1) after multiplying it by /3z will give the solution
in the interval [—%, %], as long as we use the fact th&t(0) = 0, since there is one node
there. For the first excited state there is only one node, thus all the pieces outside the
interval [, 2] will be even.

One can show thus that fw% < z < 5 we obtain theexact solution

1
2
sn[z/(L+€)/2v, 2¢ /(1 + €)]

V(z) =+/1—
@ enlz/ A+ )20, 2¢ /(1 + €]

with ' (0) = /(1 —€2)/2v and 0< € < 1. We can easily verify that this expression
satisfies equation (3.1). The value ¥f(z) atz = % as calculated from equation (3.10),
must be equal to the one that can be calculated from equation (3.3). This relation determines
the parametet. If the even pieces are deep enough, i.e. i small enough, then the slope

of W(z) at (3)_ will turn out to bea W (3)/2v.

Indeed, we saw that if for small the value of¥ at the spikes of the potential is very
large, theng ~ /326 %/2V7 In general, the even and odd pieces correspond to the same
energy ifW is very large at the spikeg, being quite small. But iflIJ(%) is very large, then
equation (3.10) implies thati[/(1+ €)/8v, 2¢/(1 + ¢)] ~ 0, so as to make& (z) almost

(3.10)
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diverge. Consequently

V(A +¢€)/8v &~ K[2¢/(1+ €)] (3.11)
whereK is the elliptic functionk (m) = 0"/2 d9/+v/1— msir?6. And sincev is small, the
value of K will have to be rather large, which means that@ + ¢) — 1, i.e.e — 1.
Indeed, remembering tha (m) ~ In./16/(1 — m) whenm — 1, we can easily find that
equation (3.11) is solved by the value

1—e~328YV, (3.12)

So this value ok yields a very IargeIJ(%), for smallv. In fact, we must have in general,
for any v,

JA+€)/8v < K[2¢/(1+ €)] (3.13)

otherwise the elliptic functiorrn would obtain a root in [O%] and ¥ (z) would have a
vertical asymptote there.

We can now check the value @f(%). The second argument of the elliptic functions
dn andcn is (24+4¢?)/(2+24?) for the even pieces and 2(1+¢) for the odd pieces, both of
which will equal 1-16e /v when equations (3.9) and (3.12) hold, i.e. for very large values
of \11(%). Therefore for very smalb this second argument is essentially 1, in which case
thesn becomes tanh, the: becomes sech, and thde becomes sech. Then equation (3.10)
gives W (z) ~ +/1—esinhz/(T+€)/2v) in [—3, 3], and ¥ (z) ~ g coshfz —n)//V] in
[n — % n -+ %], wheren # 0. Both expressions then give the same valuestlfo%) and
|W'(3)], as expected.

The procedure for finding the first excited state then consists of finding the vakie of
that would ensure continuity of (z) atz = % In that case the slope at= (%)_ will turn
out automatically to be the exact opposite of the slone:at(%)+. Finding the ground state,
on the other hand, simply requires findinggasuch that|V'(n + %)I = (x/2v)¥(n + %).
This relation is precisely equation (3.4).

Finally, we can find the highest excited state, the one consisting of odd pieces only, by
extending periodically the odd solution of equation (3.10), and finding a valuesofch
that |¥'(n + %)| = (a/2v)¥(n + %). Since the minimum valug of the even piece for the
solutions that interest us ig32e /27, j.e. practically zero, the energy of the even piece
and of the odd piece is essentially the same since they have the-sdide |¥|*#/2. And
all the states are then degenerate.

It is interesting to note that = 2vW'(3)/ ¥ (3) — 4v + % if v — oo, for the W(z) of
equation (3.10). Hence, the highest state does not exist whenoco, unlesse = 4v + %
Similarly, quite a few other excited states do not exist for large values. oThe even
ground state always exists, df is above the lower bound of equation (3.6). We present
numerical values of the parameters and energies of the ground state, of the first excited state
and of the highest state in tables 1-3 for various choices arid«.

Note that for a given choice af, large or small, and a given value efgreater than
the lower bound of equation (3.6, is given by equation (3.4). But it is only smalls,
anda’s quite far from their lower bound, that will lead to a ground state with deep even
pieces. In that case is given by equation (3.9), and the ground state will be practically
degenerate with the first few excited states.
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Table 1. Parameters of the ground state fafunction wells, for various choices of and .
E, is the energy per interval.

v a Y=g W3 —V'(3)+ Eg

0.002 1 72x10°% 15748 3937 —81.4526
0.01 0.25 0.0127 1.0608 13.2601 —0.02710
0.01 1 0.031074 6.928 21 346.41 —14.9334
0.01 10 0.037 283 70.696 5 35348.3 —-16646.9
0.05 1 0.34647 2.83402 28.3402 —1.95903
0.05 10 0.511176 31.5911 3159.11 3314

0.1 1 0.497576 1.78192 8.90962 —0.59964

Table 2. Parameters of the first excited state 8efunction wells, for various choices of and
«a. Ep is the energy in{%, %]. For the other intervals, the energy is thg given in table 1.

v o q € YR Y- E1

0.002 1 72x 105 152x10° 15748 3937 —81.4526
0.01 0.25 0.0127 0.999 838 1.0608 13.2613 —0.027094
0.01 1 0.031074 0.99903 6.9282 346.41 —14.9333
0.01 10 0.037283 0.998598 70.696 35348.3 -16646.9

0.05 1 0.34647 0.82356 2.8340 28.4417  —-1.92445
0.05 10 0.511176 0.363395 31.591 3159.12 -3313.85

0.1 1 0.497576 0.424 940 1.7819 9.28766 —0.526821

Table 3. Parameters of the highest state $efunction wells, for various choices of and .
E;, is the energy per interval.

v o € () W'(5)- Ej

0002 1 1-5.2x10° 15748 3937 —81.4526
001 025 0999838 1.0605 13.2565  —0.02707
001 1 0.99903 6.9282  346.41 ~14.9332
001 10 0998598  70.696 353483 —16646.9
005 1 0.82442 2.8213 28.213 -1.89582
005 10 0363395  31.591 3159.11 -3313.84
0.1 1 0.516 054 1.6527 8.26345  —0.40157
1 4.34  0.730536 0.2518 054642  —0.00038

4. A potential with Gaussian wells

We shall examine numerically the bound states that correspond to the choice
u@z =1-g) expl-b(z —n— 37 (4.2)

shown in figure 4. We choose the parameters so tHateg > 1. Thenu(z) is negative at
its minima and positive at the midpoints between the minima. Thereforewiére exactly
zero, then there would be a nonzero wavefunction at the minimn&zof but there would be
a region around the midpoints whetewould be exactly zero. Whenis slightly positive,
the stiffness of the wavefunction makss leak into the ‘forbidden’ regions (tunnelling).
If, however,b < 4Ing, then there is no tunnelling. We need a large enokigh order to
obtain tunnelling.
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Figure 4. The potentialu(z) for Gaussian wellsg = 2.5, b = 20).
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Figure 5. The ground state, the first excited state, and the highest state, for 20 Gaussian wells
with v = 0.01, g = 2.5, b = 20, with the corresponding energies per interval.

If, on the other handp is extremely large, whilgg remains finite, the width of each
well is reduced, its strength remaining unaltered. We expect therefore that for agiven
we cannot increasé indefinitely, because we shall not be able to find a solution. The
numerical calculations do indeed verify this.
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Figure 6. The ground state, the first excited state, and the highest state, for 20 Gaussian wells
with v = 0.05, g = 2.5, b = 20, with the corresponding energies per interval.

Thus, ifb is large enough, but not too large, angifs large enough to allow a nonzero
solution, we shall have a competition between the kinetic energy and the rest of the energy.
The latter forcesl to follow the variations oi«(z). The kinetic energy, on the other hand,
wants W to be constant in space. Solutions such as the one in figure 2 will be relevant
for small v, since large values af tend to push¥ towards a constant. Indeed, numerical
calculations verify that for large (e.g.v = 0.3), the kinetic energy is strong enough to
force Wnax to be close toVn,n, and Wi, > 0. The ground state is then a chain of shallow
little cups away from zero.

Excited states that will be almost degenerate in energy with the ground state will appear
at small values of, when the minimum of the ground-state wavefunction between the wells
is very small, whileWa > 0. Figure 5 shows the ground state, the first excited state, and
the highest excited state, for= 0.01, with the corresponding energies per interval, for a
sample of 20 Gaussian wells. Figure 6 shows the same states, but=fd@.05. We see
again the characteristics mentioned earlier: full degeneragyisfsmall enough, in which
case the minimum of between the wells is quite small compared with its valyg, at
the wells. The value o, depends strongly op.

Remember also that the energy difference between the ground state and the first excited
state is strictly equal to zero for an infinite number of wells. This is due to the fact
that the wavefunction of the first excited state is exactly equal or exactly opposite to the
wavefunction of the ground state on almost all of the infinitely many wells. Indeed, in
figures 7 and 8 we see the first excited state for a fairly large value ahd a series of
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Figure 7. First excited state for Gaussian wells with= 0.1, b = 20, andg = 2.2, 2.5 and 5.

1.2

— =
0.8

—— b=10
0.4 —— =20

— h=25

v=0.10, g=2.5

Figure 8. First excited state for Gaussian wells with= 0.1, ¢ = 2.5 andb = 5, 10, 20, and
25.

values forb andg. Here the stiffness of the wavefunction is quite large, so the change of
the sign cannot take place within just one interval. This change now occurs over three or
four wells. For small values of though, when the wavefunction is quite malleable, the
wavefunction changes sign within one interval.

5. Conclusions

We have studied the bound states of a nonlinear version of thé&d@nger equation for the
Kronig—Penney model, a version that is relevant to quite a few phenomena in condensed
matter physics.

We have seen that there is a substantial range of parameters, not just for the Kronig—
Penney model but for other simple oscillatory choices @f) as well, for which the various
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states are essentially degenerate in energy. This degeneracy requiresthatall enough,
so as to allow the wavefunction to have a small, but nonnegligible, value at the midpoints
between the wells. At the same time, the value of the wavefunction at the wells can be
quite substantial. Then there is very little cost in havihghange sign in going from one
well to the next. In fact, the energy differences are really small whigg, > Wnin. This
means that the lower excited states, which connect regions of poditiwéth regions of
negative¥, become as favourable as the ground state. This degeneracy is exact in the limit
of infinitely many quantum wells for these lower excited states. Even the highest excited
state though, which consists of odd pieces only, has an energy very close to the energy of
the ground state for sufficiently small

We demonstrated this basic idea in section 2 through a variational calculation valid for
a generic oscillatory potential. The variational results were confirmed through the exact
solution of the nonlinear Kronig—Penney model, presented in section 3, as well as through
a numerical calculation for the case of another simple oscillatory potential, presented in
section 4. All these calculations show the exact (for infinitely many spikes) or approximate
(for finitely many spikes) degeneracy of the ground state.
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